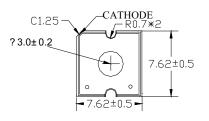
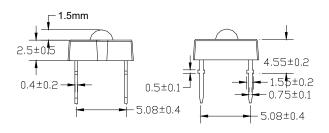


FLUX LED SPECIFICATION

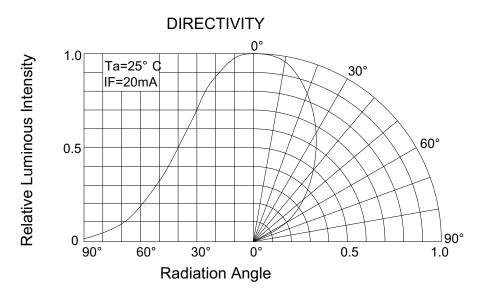
980MW7C


ATTENTION OBSERVE PRECAUTIONS FOR HANDLING ELECTROSTATIC DISCHARGE SENSITIVE DEVICES


Fatures:

- Single color
- High bright output
- High Current Operation
- Low power consumption
- High reliability and long life

Descriptions:


- Dice material: InGaN
- Emitting Color: White
- Device Outline: 7.6mmX7.6mm
- Lens Type: Water Clear

NOTE:

- All dimensions are millimetres.
- Tolerance is +/-0.25mm unless otherivise

					1	
Parameter	Symbol	Test Condition	Va	Unit		
T arameter	Symbol	lest condition	Min. Max.		Onic	
Reverse Voltage	VR	IR = 30 µ A	5		V	
Forward Current	lF			30	mA	
Power Dissipation	Pd			75	mW	
Pulse Current	Ipeak	Duty=0.1mS,1kHz		100	mA	
Operating Temperature	Topr		-40	+85	°C	
Storage Temperature	Tstr		-40	+100	°C	

Absolute maximum ratings (Ta = 25°C)

Electrical and optical characteristics $(Ta = 25^{\circ}C)$

Parameter	Symbol	Test Condition		Unit		
Faranieter	Symbol	Test Condition	Min.	Тур.	Max.	Offic
Forward Voltage	VF	IF = 30mA		V9~V12		
Reverse Current	IR	VR = 5V			30	μ Α
Color	λ d	IF =30mA		WA~WD		
Spectral Line half-width	Δλ	IF =30mA				nm
Luminous Flux	Iv	IF = 30mA		L,M		
Viewing Angle	2 θ 1/2	IF = 30mA	70		80	Deg.

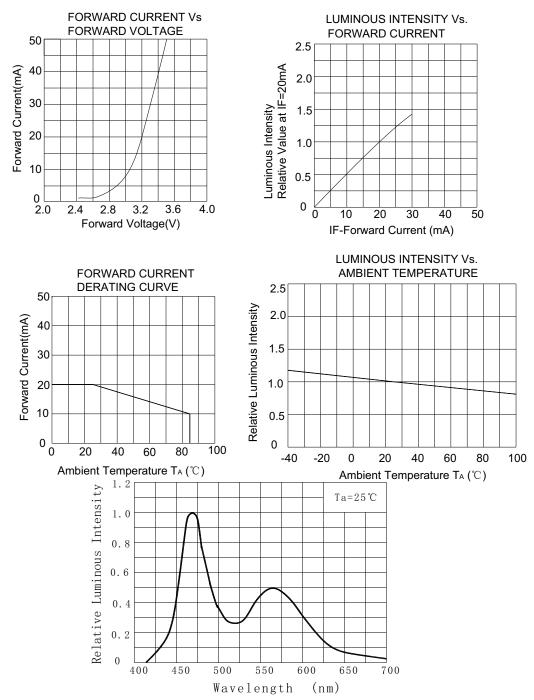
table

FLUX BIN FOR PIRANHA (UFO) LEDS

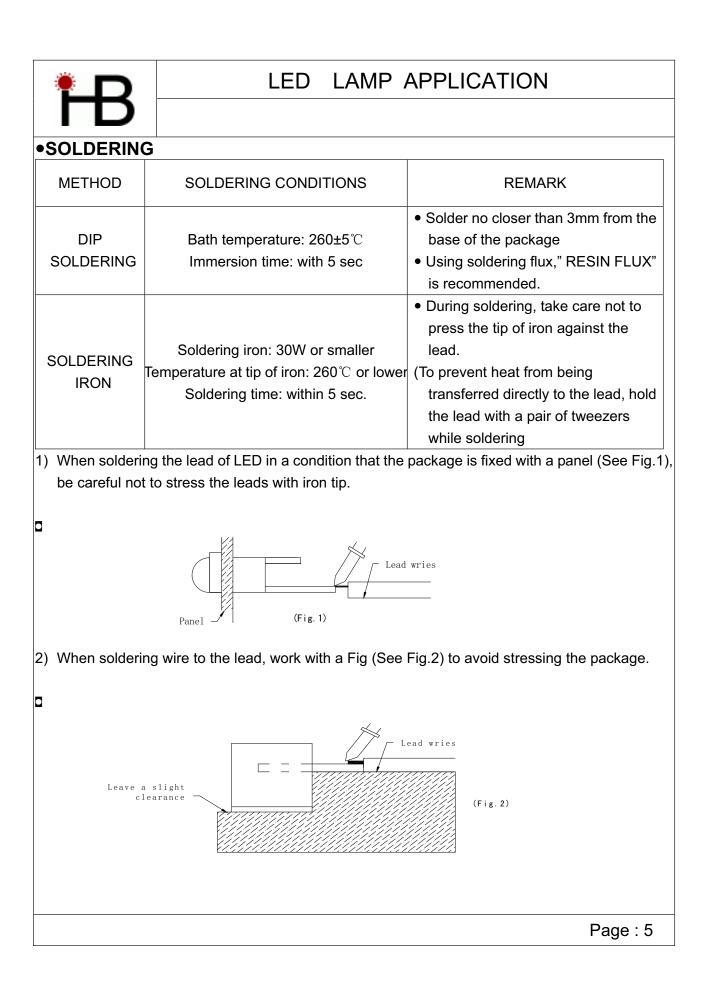
Placing of white color BINs on CIE

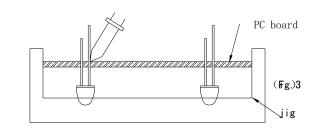
0495 0.4 4000 3636 3333 3077 2857 2677 2500 D50 D65 D93 0.3 6490 0.2 485 480 0.1 q475 470 460 380 0.0 0.0 0.4 0.5 0.1 0.2 0.3 FORWARD VOLTAGE (VF) BIN

Bin Code	VF (V)						
V1	1.6-1.8	V5	2.4-2.6	V9	3.2-3.4	V13	4.0-4.2
V2	1.8-2.0	V6	2.6-2.8	V10	3.4-3.6	V14	4.2-4.4
V3	2.0-2.2	V7	2.8-3.0	V11	3.6-3.8	V15	4.4-4.6
V4	2.2-2.4	V8	3.0-3.2	V12	3.8-4.0	V16	4.6-4.8

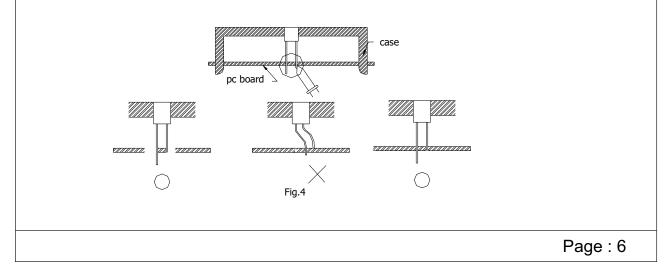


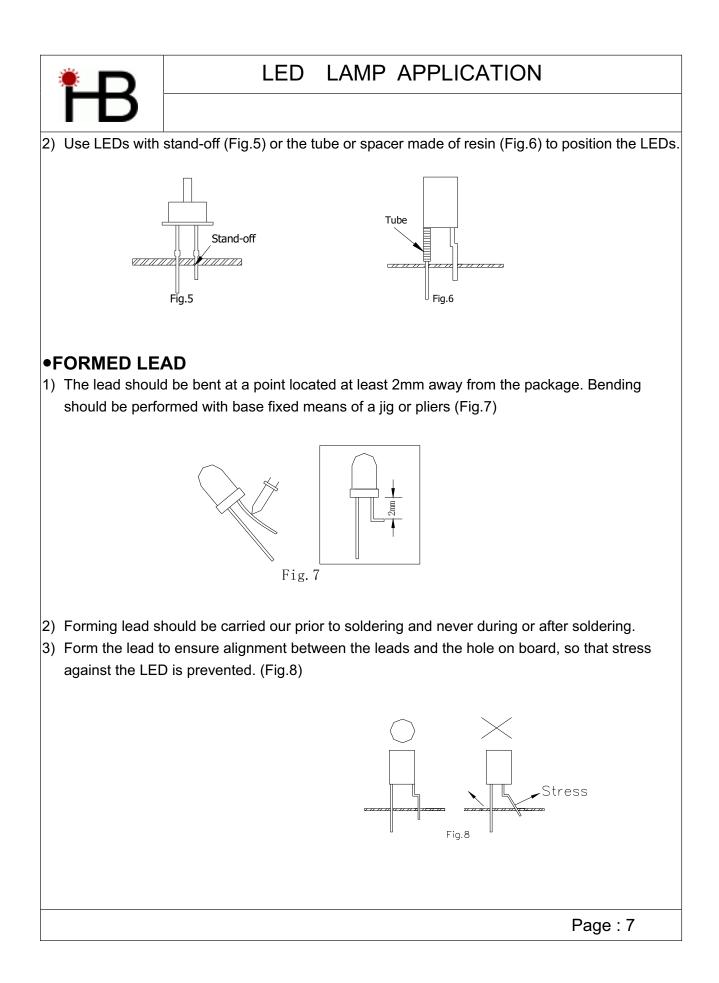
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Wal	X	0.243	0.215	0.230	0.263	Wo2	X	0.263	0.246	0.264	0.280
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	wai	Y	0.200	0.230	0.250	0.220	wa2	Y	0.220	0.236	0.267	0.248
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Wa3	X	0.246	0.230	0.248	0.264	Wb1	X	0.280	0.264	0.283	0.296
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	was	Y	0.236	0.250	0.286	0.267	W01	Y	0.248	0.267	0.305	0.276
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Wh2	X	0.264	0.248	0.275	0.283	Wc1	X	0.296	0.287	0.330	0.330
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	W02	Y	0.267	0.286	0.321	0.305	WCI	Y	0.276	0.295	0.339	0.318
Y 0.295 0.305 0.360 0.339 Y 0.305 0.321 0.350 0.332 Wc4 X 0.306 0.298 0.321 0.330 Wd1 X 0.330 0.361 0.356 Wc4 X 0.332 0.350 0.379 0.360 Wd1 X 0.318 0.360 0.385 0.351 Wd2 X 0.330 0.321 0.366 0.361 Wf X 0.356 0.366 0.391 0.380	Wc2	X	0.287	0.283	0.330	0.330	Wc3	X	0.283	0.275	0.298	0.306
Wc4 Y 0.332 0.350 0.379 0.360 Wd1 Y 0.318 0.360 0.385 0.351 Wd2 X 0.330 0.321 0.366 0.361 Wf X 0.356 0.366 0.385 0.351		Υ	0.295	0.305	0.360	0.339		Y	0.305	0.321	0.350	0.332
Y 0.332 0.350 0.379 0.360 Y 0.318 0.360 0.385 0.351 Wd2 X 0.330 0.321 0.366 0.361 Wf X 0.356 0.391 0.380	Wc4	X	0.306	0.298	0.321	0.330	Wd1	X	0.330	0.330	0.361	0.356
Wd2 Wf		Y	0.332	0.350	0.379	0.360	Wai	Y	0.318	0.360	0.385	0.351
Y 0.360 0.379 0.419 0.385 Y 0.351 0.419 0.436 0.381	Wd2	X	0.330	0.321	0.366	0.361	Wf	X	0.356	0.366	0.391	0.380
		Y	0.360	0.379	0.419	0.385		Y	0.351	0.419	0.436	0.381

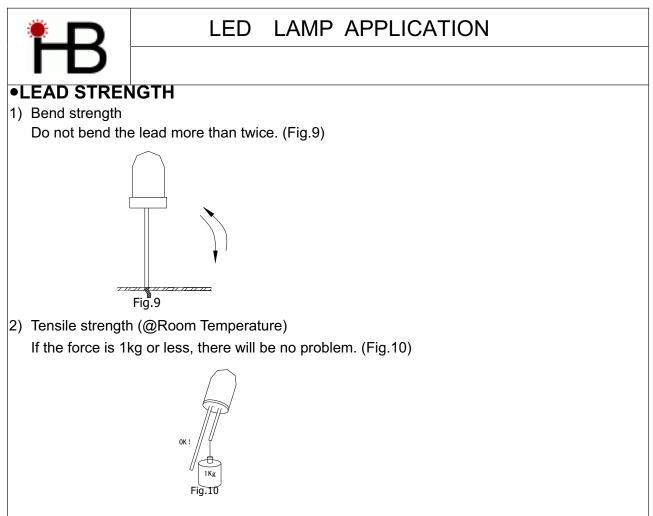

Chromaticity Coordinates Ranks (IF=20mA Ta=25℃)


Typical electrical/optical characteristic curves:

LED LAMP APPLICATION


3) Similarly, when a jig is used to solder the LED to PC board, take care as much as possible to avoid steering the leads (See Fig.3).




- 4) Repositioning after soldering should be avoided as much as possible. If inevitable, be sure to preserve the soldering conditions with irons stated above: select a best-suited method that assures the least stress to the LED.
- Lead cutting after soldering should be performed only after the LED temperature has returned to normal temperature.

•LED MOUNTING METHOD

1) When mounting the LED by using a case, as shown Fig.4, ensure that the mounting holds on the PC board match the pitch of the leads correctly-tolerance of dimensions of the respective components including the LED should be taken into account especially when designing the case, PC board, etc. to prevent pitch misalignment between the leads and board holes, the diameter of the board holes should be slightly larger than the size of the lead. Alternatively, the shape of the holes should be made oval. (See Fig.4)

•HANDLING PRECAUTIONS

Although rigid against vibration, the LEDs may damaged or scratched if dropped. So take care when handling.

•CHEMICAL RESISTANCE

- 1) Avoid exposure to chemicals as it may attack the LED surface and cause discoloration.
- 2) When washing is required, refer to the following table for the proper chemical to be sued. (Immersion time: within 3 minutes at room temperature.)

SOLVENT	ADAPTABILITY			
Freon TE	\odot			
Chlorothene	\times			
Isopropyl Alcohol	\odot			
Thinner	\times			
Acetone	\times			
Trichloroethylene	\times			
\odot Usable X Do not use.				

NOTE: Influences of ultrasonic cleaning of the LED resin body differ depending on such factors as the oscillator output, size of the PC board and the way in which the LED is mounted. Therefore, ultrasonic cleaning should only be performed after confirming there is no problem by conducting a test under practical.

Page: 8

LED LAMP PASSED TESTS

Experiment Item:

ltem	Test Condition			
Item	Lamp & IR	Reference Standard		
OPERATION LIFE	Ta : 25±5℃ IF= 20mA RH : <=60%RH ① DYNAMIC:100mA 1ms 1/10 duty ② STATIC STATE: IF=20mA TEST TIME: 168HRS (-24HRS [,] +24HRS) 500HRS (-24HRS [,] +24HRS) 1000HRS (-24HRS [,] +72HRS)	MIL-STD-750 : 1026 MIL-STD-883 : 1005 JIS C 7021 : B-1		
HIGH TEMPERATURE HIGH HUMIDITY STORAGE	Ta: 65℃±5℃ RH: 90~95%RH TEST TIME:240HRS±2HRS	MIL-STD-202:103B JIS C 7021:B-1		
TEMPERATURE CYCLING	105℃~25℃~-55℃~25℃ 30min 5min 30min 5min 10CYCLES	MIL-STD-202 : 107D MIL-STD-750 : 1051 MIL-STD-883 : 1010 JIS C 7021 : A-4		
THERMAL SHOCK	105℃±5℃~-55℃±5℃ 10min 10min 10CYCLES	MIL-STD-202:107D MIL-STD-750:1051 MIL-SYD-883:1011		
SOLDER RESISTANCE	T,sol:260℃±5℃ DWELL TIME:10±lsec	MIL-STD-202 : 210A MIL-STD-750-2031 JIS C 7021 : A-1		
SOLDERABILITY	T,sol:230℃±5℃ DWELL TIME:5±lsec	MIL-STD-202 : 208D MIL-STD-750 : 2026 MIL-STD-883 : 2003 JIS C 7021 : A-2		
Drive Method				
Circuit m	odel A Circuit model B			
(A)Recommended cir		Page : 9		
	Vuit.	Ŭ		

(B)The difference of brightness between LED's could be found due to the Vf-If characteristics of LED.